Abstract

We develop a novel metal contact approach using an antimony (Sb)-platinum (Pt) bilayer to mitigate Fermi-level pinning in 2D transition metal dichalcogenide channels. This strategy allows for control over the transport polarity in monolayer WSe2 devices. By adjustment of the Sb interfacial layer thickness from 10 to 30 nm, the effective work function of the contact/WSe2 interface can be tuned from 4.42 eV (p-type) to 4.19 eV (n-type), enabling selectable n-/p-FET operation in enhancement mode. The shift in effective work function is linked to Sb-Se bond formation and an emerging n-doping effect. This work demonstrates high-performance n- and p-FETs with a single WSe2 channel through Sb-Pt contact modulation. After oxide encapsulation, the maximum current density at |VD| = 1 V reaches 170 μA/μm for p-FET and 165 μA/μm for n-FET. This approach shows promise for cost-effective CMOS transistor applications using a single channel material and metal contact scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.