Abstract

Acinetobacter baumannii is a pathogen responsible for nosocomial infections, especially in patients with burns and ventilator-associated pneumonia (VAP). The aims of this study was to compare the biofilm formation capacity, antimicrobial resistance patterns and molecular typing based on PFGE (Pulsed-Field Gel Electrophoresis) in A.baumannii isolated from burn and VAP patients. A total of 50 A.baumannii isolates were obtained from burn and VAP patients. In this study, we assessed antimicrobial susceptibility, biofilm formation capacity, PFGE fingerprinting, and the distribution of biofilm-related genes (csuD, csuE, ptk, ataA, and ompA). Overall, 74% of the strains were multidrug resistant (MDR), and 26% were extensively drug-resistant (XDR). Regarding biofilm formation capacity, 52%, 36%, and 12% of the isolates were strong, moderate, and weak biofilm producers. Strong biofilm formation capacity significantly correlated with XDR phenotype (12/13, 92.3%). All the isolates harbored at least one biofilm-related gene. The most prevalent gene was csuD (98%), followed by ptk (90%), ataA (88%), ompA (86%), and csuE (86%). Harboring all the biofilm-related genes was significantly associated with XDR phenotype. Finally, PFGE clustering revealed 6 clusters, among which cluster No. 2 showed a significant correlation with strong biofilm formation and XDR phenotype. Our findings revealed the variable distribution of biofilm-related genes among MDR and XDR A.baumannii isolates from burn and VAP patients. A significant correlation was found between strong biofilm formation capacity and XDR phenotype. Finally, our results suggested that XDR phenotype was predominant among strong-biofilm producer A.baumannii in our region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call