Abstract

The synthesis of nanoparticles using microorganisms and their metabolites is of increasing interest because they are potential producers of biocompatible and environmental friendly nanoparticles. Their nanoparticles can serve as potent alternatives to antibiotics against multidrug resistant (MDR) bacteria. The antibacterial potential of Bacillus spp. metabolites, their silver nanoparticles (SNPs), and some antibiotics against MDR Salmonella spp. was evaluated. The antimicrobial potential of metabolites and SNPs biosynthesized from Bacillus spp. was characterized, the effect of physicochemical parameters on SNP biosynthesis, the antimicrobial activity of the SNPs, and combination of SNPs and antibiotics against MDR Salmonella strains were evaluated. The bioactive metabolites of the Bacillus spp. exhibited varied antimicrobial potential against the tested MDR Salmonella spp. The metabolites were able to bioreduce silver nitrate (AgNO3) to Ag+ for SNP biosynthesis. Change in color from whitish to darkish brown and a surface plasma resonance peak of 600-800 nm were observed. The SNPs were aggregated, rods, and crystalline in shape and their sizes were 15 μm, 16 μm, and 13 μm. Carboxylic acid, amino acid, alcohol, esters, and aldehydes were the functional groups found in the biosynthesized SNPs. The antibacterial activity of BAC1-SNPs, BAC7-SNPs, and BAC20-SNPs against MDR Staphylococcus aureus 9 (MDRSA9) and MDRSA18 was 6.0-22 mm and 11-20 mm. SNPs biosynthesized at pH 7 and 10 mM AgNO3 had the highest antagonistic activity. Combination of SNPs and antibiotics exhibited the best antagonistic potential. The metabolites and SNPs from Bacillus spp. exhibited antagonistic effects against MDR Salmonella spp. The combined SNPs and antibiotics had better antimicrobial activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.