Abstract

The conformation of tachyplesin I, an antimicrobial cationic peptide of 17 residues found in the hemocyte debris of horseshoe crab, was investigated using two-dimensional NMR spectroscopy. The 1H NMR spectrum of tachyplesin I in aqueous solution could be completely assigned, and the secondary structure was substantiated by interpretation of the nuclear Overhauser effect, coupling constant, amide exchange rate, and temperature dependence of the amide chemical shift. Tachyplesin I takes on a fairly rigid conformation constrained by two disulfide bridges and adopts a conformation consisting of an anti-parallel beta-sheet (residues 3-8 and 11-16) connected by a beta-turn (residues 8-11). In this planar conformation, five bulky hydrophobic side groups are localized in one side of the plane and six cationic side groups are distributed at the "tail" part of the molecule (residues 1-5 and 14-17). This amphipathic structure of the molecule is presumed to be closely associated with the bactericidal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.