Abstract

C-type lectins (CTLs) are pattern recognition proteins that play significant roles in the innate immune system by identifying and eliminating pathogens. Here, we have reported a CTL (EsLecH) from the Chinese mitten crab that can bind to microorganisms and regulate antimicrobial peptide (AMP) expression via the c-Jun N-terminal kinase (JNK) pathway. EsLecH was found to have an N-terminal signal peptide and a single carbohydrate recognition domain. The EsLecH transcript was detected abundantly in various tissues, and it was significantly upregulated in hemocytes after challenging with lipopolysaccharides and bacteria. Recombinant (r)EsLecH could bind to microorganisms, but at different levels. Ca2+ significantly increased rEsLecH binding affinity to microorganisms. Furthermore, growth inhibition by rEsLecH increased with increasing rEsLecH levels. Knockdown of EsLecH was accompanied by a significant reduction in AMP expression and JNK phosphorylation; AMP expression was reduced with JNK silencing and can not rescued by rEsLecH when absence of JNK. These results indicate that EsLecH could regulate AMPs via JNK signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.