Abstract
C-type lectins (CTLs) are pattern recognition proteins that play significant roles in the innate immune system by identifying and eliminating pathogens. Here, we have reported a CTL (EsLecH) from the Chinese mitten crab that can bind to microorganisms and regulate antimicrobial peptide (AMP) expression via the c-Jun N-terminal kinase (JNK) pathway. EsLecH was found to have an N-terminal signal peptide and a single carbohydrate recognition domain. The EsLecH transcript was detected abundantly in various tissues, and it was significantly upregulated in hemocytes after challenging with lipopolysaccharides and bacteria. Recombinant (r)EsLecH could bind to microorganisms, but at different levels. Ca2+ significantly increased rEsLecH binding affinity to microorganisms. Furthermore, growth inhibition by rEsLecH increased with increasing rEsLecH levels. Knockdown of EsLecH was accompanied by a significant reduction in AMP expression and JNK phosphorylation; AMP expression was reduced with JNK silencing and can not rescued by rEsLecH when absence of JNK. These results indicate that EsLecH could regulate AMPs via JNK signaling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have