Abstract
Vibrios are naturally present in marine ecosystems and are commonly allied with live seafood. Vibrio species frequently cause foodborne infections, with Vibrio parahaemolyticus recently becoming a significant contributor to foodborne illness outbreaks. In response, aniline and 68 of its aniline derivatives were studied due to their antibacterial effects targeting V. parahaemolyticus and Vibrio harveyi. Among these, 4-amino-3-chloro-5-nitrobenzotrifluoride (ACNBF) and 2-iodo-4-trifluoromethylaniline (ITFMA) demonstrated both antibacterial and antibiofilm properties. The minimum inhibitory concentrations (MIC) for ACNBF and ITFMA were 100 µg/mL and 50 µg/mL, respectively, against planktonic cells. The active compounds effectively suppressed biofilm formation in a manner dependent on the dosage. Additionally, these trifluoro-anilines significantly reduced virulence factors such as motility, protease activity, hemolysis, and indole production. Both trifluoro-anilines caused noticeable destruction to the membrane of bacterial cells and, at 100 µg/mL, exhibited bactericidal activity against V. parahaemolyticus within 30 min. Toxicity assays using the Caenorhabditis elegans and seed germination models showed that the compounds displayed mild toxicity. As a result, ACNBF and ITFMA inhibited the growth of both planktonic cells and biofilm formation. Furthermore, these active compounds effectively prevented the formation of biofilm on the surfaces of shrimp and squid models, highlighting their potential use in controlling seafood contamination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have