Abstract

Given the demonstrated antimicrobial properties of silver nanoparticles (AgNPs), and the key role that microorganisms play in performing critical ecosystem functions such as decomposition and nutrient cycling, there is growing concern that AgNP pollution may negatively impact ecosystems. We examined the response of streamwater and sediment microorganisms to commercially available 21 ± 17 nm AgNPs, and compared AgNP impacts to those of dissolved-Ag added as AgNO(3). We show that in streamwater, AgNPs and AgNO(3) decreased respiration in proportion to dissolved-Ag concentrations at the end of the incubation (r(2) = 0.78), while in sediment the only measurable effect of AgNPs was a 14 % decrease in sulfate concentration. This contrasts with the stronger effects of dissolved-Ag additions in both streamwater and sediment. In streamwater, addition of dissolved-Ag at a level equivalent to the lowest AgNP dose led to respiration below detection, a 55 % drop in phosphatase enzyme activity, and a 10-fold increase in phosphate concentration. In sediment, AgNO(3) addition at a level equivalent to the highest AgNP addition led to a 34 % decrease in respiration, a 55 % increase in microbial biomass, and a shift in bacterial community composition. The results of this study suggest that, in similar freshwater environments, the short-term biological impacts of AgNPs on microbes are attenuated by the physical and chemical properties of streamwater and sediment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.