Abstract

Silver nanoparticles (AgNPs) were biosynthesized for the first time from waste leaves extract of local doum palms in Tabuk, Saudi Arabia. The transmission electron microscope (TEM) revealed a spherical shape with a particle size from 18 to 33 nm. The d-spacing is about 2.6 Å, which confirms a face-centered cubic crystalline building. The biosynthesized AgNPs were evaluated as an antimicrobial agent against several pathogenic bacteria, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. The highest action was exerted against S. aureus ATCC 29213 (MIC = 1.5 µg/mL). Interestingly, AgNPs also showed anticandidal activity against the pathogenic yeasts Candida albicans ATCC 14053 (MIC = 24 µg/mL) and Candida tropicalis ATCC 13803 (MIC = 96 µg/mL). Scanning electron microscope (SEM) revealed deep morphological changes in Candida spp. due to the treatment of the AgNPs. Scarce pseudohyphae, perforation, exterior roughness, irregularly shaped cells, and production of protective exopolysaccharide (EPS) were the main features. In conclusion, the process of biosynthesis of AgNPs from the aqueous leaf extract of Hyphaene thebaica is environmentally compatible and induces the biosynthesis of tiny AgNPs that could be a promising candidate in biomedical applications, including antimicrobials against some pathogenic bacteria and yeasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.