Abstract

Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used as a matrix for plant extracts (tulsi, brahmi, lemon, blackberry, nettle root, and nettle leave) and essential oils (cinnamon, sage, clove, mint, thyme, lemongrass, rosemary, lemon, anise, tea tree, lime, grapefruit, and tangerine), and the antimicrobial properties of these biomaterials was determined. The growth-inhibiting effects of plant extracts and essential oils combined with BC were analyzed against five Cronobacter species isolated from food matrix and two reference strains from the ATCC (513229 and 29544). Additional analyses were conducted for BC water activity and for its capability to absorb biologically active plant compounds. The cellulose matrix with a 50% extract from brahmi was found to effectively inhibit the growth of the selected Cronobacter strains. The other plant water extracts did not show any antimicrobial activity against the tested strains. It was demonstrated that BC soaked with thyme essential oil was characterized with the strongest antimicrobial activity in comparison to the other tested EOs. These study results indicate the feasibility of deploying BC impregnated with natural plant components as an active and environmentally-friendly packaging material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.