Abstract

The antimalarial drugs, quinacrine, chloroquine, quinine, primaquine, and mefloquine, share structural similarities with W-7, a compound that inhibits calcium-dependent backward swimming and calcium currents in Paramecium. Therefore, we tested whether antimalarial drugs also inhibit backward swimming and calcium currents in P. calkinsi. When the Paramecium is depolarized in high potassium medium, voltage-dependent calcium channels in the ciliary membrane open causing the cell to swim backward for 30 to 70 s. Application of calcium channel inhibitors, such as W-7, reduce the duration of backward swimming. In 0.05 mM calcium, quinacrine, mefloquine, quinine, chloroquine, primaquine and W-7 all reduced the duration of backward swimming. These effects were seen in sodium-containing and sodium-free high potassium solutions as well as sodium-free depolarizing solutions containing potassium channel blockers. In these low calcium solutions, backward swimming was inhibited by 50% at concentrations ranging from 100 nM to 30 microM. At higher calcium concentrations (1 mM or 15 mM), the effects of the antimalarials and W-7 were reduced. The effects of quinacrine and W-7 were tested directly on calcium currents using the two microelectrode voltage clamp technique. In 15 mM calcium, 100 microM quinacrine and 100 microM W-7 reduced the peak calcium current by 51% and 42%, respectively. Thus, antimalarial drugs reduce calcium currents in Paramecium calkinsi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.