Abstract
BackgroundPlumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice.MethodsIn vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I based assay. In vivo antimalarial activity was investigated in Plasmodium berghei-infected mouse model (a 4-day suppressive test).ResultsPlumbagin exhibited promising antimalarial activity with in vitro IC50 (concentration that inhibits parasite growth to 50%) against 3D7 chloroquine-sensitive P. falciparum and K1 chloroquine-resistant P. falciparum clones of 580 (270–640) and 370 (270–490) nM, respectively. Toxicity testing indicated relatively low toxicity at the dose levels up to 100 (single oral dose) and 25 (daily doses for 14 days) mg/kg body weight for acute and subacute toxicity, respectively. Chloroquine exhibited the most potent antimalarial activity in mice infected with P. berghei ANKA strain with respect to its activity on the reduction of parasitaemia on day 4 and the prolongation of survival time.ConclusionsPlumbagin at the dose of 25 mg/kg body weight given for 4 days was safe and produced weak antimalarial activity. Chemical derivatization of the parent compound or preparation of modified formulation is required to improve its systemic bioavailability.
Highlights
Plumbagin is the major active constituent in several plants including Plumbago indica Linn
Chemotherapy with effective antimalarial drugs remains the mainstay for malaria control in the absence of a suitable vaccine treatment
The ethanolic extract of Plumbago zeylanica has been reported to exhibit in vitro antimalarial activity against chloroquine-sensitive clone of P. falciparum (3D7) with an IC50 of 17 μg/ml [6]
Summary
Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. It is a naphthoquinone that occurs in plant roots as a colorless combined form that can be processed to plumbagin by acid treatment [4]. This compound has been shown to display a wide spectrum of biological and pharmacological activities such as activities against malaria, leishmania and trypanosome parasites, as well as against virus, cancers, and insects [5]. Acute and subacute toxicity tests were performed to confirm its safety and tolerability, and to obtain an optimal dose used for the in vivo antimalarial evaluation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.