Abstract
We have examined in whole blood the actions of 2 lipoxin A(4) (LXA(4)) stable analogs, 15-R/S-methyl-LXA(4) and 16-phenoxy-LXA(4), for their impact on the expression of adhesion molecules on human leukocytes and coronary artery endothelial cells (HCAEC) and on neutrophil adhesion to HCAEC in vitro. Both LXA(4) analogs in nanomolar to micromolar concentrations prevented shedding of L-selectin and downregulated CD11/CD18 expression on resting neutrophils, monocytes, and lymphocytes. Changes in CD11/CD18 expression were blocked by the mitogen-activated protein kinase kinase inhibitor PD98059. The LXA(4) analogs also attenuated changes in L-selectin and CD11/CD18 expression evoked by platelet-activating factor (PAF), interleukin-8, or C-reactive protein-derived peptide 201-206 with IC(50) values of 0.2 to 1.9 micromol/L, whereas they did not affect lipopolysaccharide (LPS)- or tumor necrosis factor-alpha-stimulated expression of E-selectin and intercellular adhesion molecule-1 on HCAEC. These LXA(4) analogs markedly diminished adhesion of neutrophils to LPS-activated HCAEC. Inhibition of adhesion was additive with function blocking anti-E-selectin and anti-L-selectin antibodies, but was not additive with anti-CD18 antibody. Combining LXA(4) analogs with dexamethasone (100 nmol/L) almost completely inhibited PAF-induced changes in adhesion molecule expression on leukocytes and gave additive inhibition of neutrophil adhesion to HCAEC. Culture of HCAEC with dexamethasone, but not with LXA(4) analogs, also decreased neutrophil attachment. Together, these results indicate that LXA(4) stable analogs modulate expression of both L-selectin and CD11/CD18 on resting and immunostimulated leukocytes and inhibit neutrophil adhesion to HCAEC by attenuating CD11/CD18 expression. These actions are additive with those of glucocorticoids and may represent a novel and potent regulatory mechanism by which LXA(4) and aspirin-triggered 15-epi-LXA(4) modulate leukocyte trafficking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.