Abstract

The production by T cells of an antigen-specific factor capable of replacing the T-cell function in specific antibody formation was used as a tool for studying the cellular aspects of the genetic control of immune responses. The ability of different T-cell populations to produce a cooperative signal and the ability of B-cell populations to react to this signal were studied in different mouse strains. The antigen used was the synthetic polypeptide poly(LTyr,LGlu)-poly-(LPro) —poly(lXys), (T,G)-Pro -L, the response to which was found not to beH-2-linked. It was found that the SWR strain of mice, a low responder to (T,G)-Pro -L, is not capable of producing a T-cell factor specific to this antigen, but its B cells react normally to an active factor produced in a high responder strain. In the DBA/1 strain, also a low responder to (T,G)-Pro -L, the bone marrow cells are not able to cooperate with an active T-cell factor to produce anti-(T,G)-Pro —L-specific antibodies, while their T cells do produce a (T,G)-Pro -L-specific factor. The SWR (low responder) B cells can be triggered by DBA/1 (low responder) T cells factor specific to (T,G)-Pro —L to produce an antibody response to this immunogen. These results suggest that the immune response to (T,G)-Pro -L is controlled by two genes which are expressed in different lymphocyte populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call