Abstract
A comprehensive synthetic approach consisting of a series of consecutive, uniform overlapping peptides encompassing the entire protein chain was recently used to determine the full antigenic profile of the α-chain of human hemoglobin (Hb). The peptides synthesized enabled the localization of five major “continuous” antigenic regions within the α chain. The present findings describe the delineation of an antigenic site (site 2) residing within the region 41–65. Ten peptides representing the α-chain regions 41–55, 51–65, 45–54, 45–56, 45–58, 45–60, 48–56, 49–56, 50–56, and 51–56 were synthesized and purified. Quantitative radioimmunoadsorbent titrations were used to determine binding to peptide adsorbents of radioiodinated anti-Hb antibodies that were raised in rabbit, goat, and outbred mouse. In one set of peptides, the N-terminal was fixed while the C-terminal end was increased by increments of two residues from Gln-54 to Lys-60 (i.e., peptides 45–54, 45–45, 45–58, and 45–60). Binding studies revealed that maximum antibody activity resided in peptide 45–45, indicating that Lys-56 marks the C-terminal boundary of the site. In the second set of peptides, the C-terminal was fixed at Lys-56 while the peptides were elongated at their N-terminal by one-residue increments from Gly-51 to Leu-48. Antibody-binding studies with these peptides indicated that Ser-49 defines the N-terminal boundary of the site. Therefore, the antigenic site within region 41–65 of the α chain comprises residues 49–56. The relevance of these findings to the immune recognition of Hb and other proteins is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have