Abstract
The kinetics of binding and dissociation between a soluble analyte and an immobilized ligand on or near a surface are described numerically by an iterative computer model. The model is applied to a microflow chamber which is used for surface plasmon resonance measurements. It calculates diffusion perpendicular to the surface, flow parallel to the surface, and the interaction between any number of soluble and immobilized species. If the reaction between analyte and ligand is fast, binding and dissociation are influenced by the transport of the analyte to or away from the surface, in this case the measurement yields apparent association and dissociation rate constants which are not identical with the reaction rate of analyte and ligand. The transition between mass transport-controlled processes and reaction-controlled processes is described and attention is drawn to possible misinterpretations of experimental binding and dissociation curves. The measurement of rate constants higher than allowed by the conventional technique can be performed by elution of the analyte with a second analyte of low molecular weight.The kinetics of binding and dissociation between a soluble analyte and an immobilized ligand on or near a surface are described numerically by an iterative computer model. The model is applied to a microflow chamber which is used for surface plasmon resonance measurements. It calculates diffusion perpendicular to the surface, flow parallel to the surface, and the interaction between any number of soluble and immobilized species. If the reaction between analyte and ligand is fast, binding and dissociation are influenced by the transport of the analyte to or away from the surface, in this case the measurement yields apparent association and dissociation rate constants which are not identical with the reaction rate of analyte and ligand. The transition between mass transport-controlled processes and reaction-controlled processes is described and attention is drawn to possible misinterpretations of experimental binding and dissociation curves. The measurement of rate constants higher than allowed by the conventional technique can be performed by elution of the analyte with a second analyte of low molecular weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.