Abstract
Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.