Abstract

Invasive fungal infections are on the rise, leading to a continuous demand for antifungal antibiotics. Rare actinomycetes have been shown to contain a variety of interesting compounds worth exploring. In this study, 15 strains of rare actinobacterium Gordonia were isolated from the gut of Periplaneta americana and screened for their anti-fungal activity against four human pathogenic fungi. Strain WA8-44 was found to exhibit significant anti-fungal activity and was selected for bioactive compound production, separation, purification, and characterization. Three anti-fungal compounds, Collismycin A, Actinomycin D, and Actinomycin X2, were isolated from the fermentation broth of Gordonia strain WA8-44. Of these, Collismycin A was isolated and purified from the secondary metabolites of Gordonia for the first time, and its anti-filamentous fungi activity was firstly identified in this study. Molecular docking was carried out to determine their hypothetical binding affinities against nine target proteins of Candida albicans. Chitin Synthase 2 was found to be the most preferred antimicrobial protein target for Collismycin A, while 1,3-Beta-Glucanase was the most preferred anti-fungal protein target for Actinomycin D and Actinomycin X2. ADMET prediction revealed that Collismycin A has favorable oral bioavailability and little toxicity, making it a potential candidate for development as an orally active medication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call