Abstract

Optical and magnetic properties of V2O5 polycrystals were investigated through photoluminescence (PL) and magnetization measurements. The PL spectra comprise two main bands attributed to oxygen vacancies and to band-edge-related transitions. The magnetization measurements showed a predominant paramagnetic behavior in the temperature range studied (5 K–300 K) with a superimposed peak around 80 K associated with an antiferromagnetic phase. The temperature dependence of the magnetic results and the relative PL intensity presented a remarkable correlation while in the range of 80–200 K the intensity associated with oxygen vacancies became considerably more intense than band-to-band emissions, the same range in which the antiferromagnetic transition was observed. The observation of an antiferromagnetic phase in V2O5 was predicted in the literature although this result had not previously been measured experimentally. Raman spectroscopy was used as a complementary technique in order to exclude the presence of spurious vanadium oxide phases in the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.