Abstract

In this study, the antiferroelectric (AFE) and electrocaloric (EC) characteristics of lead-free titanium (Ti)-doped zirconia (ZrO2) thin films deposited via high-power impulse magnetron sputtering (HiPIMS) were investigated. The argon-to-oxygen ratio was initially optimized during deposition to obtain a more stoichiometric ZrO2 film for enhanced antiferroelectricity. Furthermore, enhanced crystallinity was achieved through the incorporation of Ti atoms into ZrO2 thin films as confirmed via grazing incidence X-ray diffraction and high-resolution transmission electron microscopy. For metal-insulator-metal capacitors with Ti-doped ZrO2 thin films, the AFE behaviors were significantly improved because of the excellent crystallinity of the tetragonal phase. Based on a fast polarization response and robust fatigue resistance under a 106-cycle endurance test, the EC effect was successfully explored, and an adiabatic temperature change (ΔT) of −14.8 K was realized. With competitive EC properties, Ti-doped ZrO2 thin films deposited via HiPIMS are proposed as promising candidates for use in future cooling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.