Abstract

Green nanotechnology-based approaches have been acquired as environmentally friendly and cost effective with many biomedical applications. The present study reports the synthesis of silver nanoparticles (AgNPs) from the leaves of Emblica phyllanthus, characterized by UV-Vis spectroscopy, EDX, SEM, AFM, and XRD. The acute and chronic antidiabetic and hypolipidemic potential of AgNPs was studied in alloxan-induced diabetic mice. A total of 11 groups (G1-G11, n = 6) of mice were treated with different concentrations (150 and 300 mM) and sizes of AgNPs and compared with those treated with standard glibenclamide. A significant decrease (P > 0.05) in the glucose level was achieved for 30, 45, and 65 nm after 15 days of treatment compared to the diabetic control. The oral administration of optimal AgNPs reduced the glucose level from 280.83 ± 4.17 to 151.17 ± 3.54 mg/dL, while the standard drug glibenclamide showed the reduction in glucose from 265.5 ± 1.43 to 192 ± 3.4 mg/dL. Histopathological studies were performed in dissected kidney and liver tissues of the treated mice, which revealed significant recovery in the liver and kidney after AgNP treatment. Acute toxicity study revealed that AgNPs were safe up to a size of 400 nm and the raw leaf extract of Emblica phyllanthus was safe up to 2500 mg/kg b.w. This study may help provide more effective and safe treatment options for diabetes compared to traditionally prescribed antidiabetic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call