Abstract

The marine alga, Symphyocladia latiuscula (Harvey) Yamada, is a good source of bromophenols with numerous biological activities. This study aims to characterize the anti-diabetic potential of 2,3,6-tribromo-4,5-dihydroxybenzyl derivatives isolated from S. latiuscula via their inhibition of tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Additionally, this study uses in silico modeling and glucose uptake potential analysis in insulin-resistant (IR) HepG2 cells to reveal the mechanism of anti-diabetic activity. This bioassay-guided isolation led to the discovery of three potent bromophenols that act against PTP1B and α-glucosidase: 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). All compounds inhibited the target enzymes by 50% at concentrations below 10 μM. The activity of 1 and 2 was comparable to ursolic acid (IC50; 8.66 ± 0.82 μM); however, 3 was more potent (IC50; 5.29 ± 0.08 μM) against PTP1B. Interestingly, the activity of 1–3 against α-glucosidase was 30–110 times higher than acarbose (IC50; 212.66 ± 0.35 μM). Again, 3 was the most potent α-glucosidase inhibitor (IC50; 1.92 ± 0.02 μM). Similarly, 1–3 showed concentration-dependent glucose uptake in insulin-resistant HepG2 cells and downregulated PTP1B expression. Enzyme kinetics revealed different modes of inhibition. In silico molecular docking simulations demonstrated the importance of the 7–OH group for H-bond formation and bromine/phenyl ring number for halogen-bond interactions. These results suggest that bromophenols from S. latiuscula, especially highly brominated 3, are inhibitors of PTP1B and α-glucosidase, enhance insulin sensitivity and glucose uptake, and may represent a novel class of anti-diabetic drugs.

Highlights

  • Diabetes is a group of metabolic diseases characterized by high blood sugar levels

  • Enzyme inhibition levels are expressed as mean IC50 values with standard deviation

  • Structural insights into the Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase enzymes inhibition revealed the importance of bromine and phenolic group number

Read more

Summary

Introduction

Diabetes is a group of metabolic diseases characterized by high blood sugar levels. It can lead to blurred vision, cardiovascular diseases, kidney and/or other organ damage and dysfunction, and even depression [1]. Diabetes is caused by a failure of the pancreas to produce insulin (type I diabetes) or by insulin resistance (cells do not respond to insulin; type II diabetes). Type II diabetes mellitus (T2DM) accounts for more than 90% of total diabetes cases [2]. Protein tyrosine phosphatase 1B (PTP1B) downregulates insulin signaling by catalyzing the dephosphorylation of. Mar. Drugs 2019, 17, 166; doi:10.3390/md17030166 www.mdpi.com/journal/marinedrugs

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call