Abstract
Two newly synthetic nontoxic dipyridine-based ionic liquids (PILs) with the same chain lengths and different polar groups were investigated: bispyridine-1-ium tetrafluoroborate (BPHP, TFPHP) with terminal polar groups Br and CF3, respectively, on Carbon steel (CS) in 8M H3PO4 as corrosion inhibitors. Their chemical structure was verified by performing 1HNMR and 13CNMR. Their corrosion inhibition was investigated by electrochemical tests, especially as mass transfer with several characterizations: Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM–EDX), UV–visible, Atomic force microscope, Atomic absorbance spectroscopy, X-ray Photoelectron Spectroscopy and Gloss value. Theoretical calculation using density functional theory by calculating several parameters, molecular electrostatic potential, Fukui Indices, and Local Dual Descriptors were performed to demonstrate the reactivity behavior and the reactive sites of two molecules with a concentration range (1.25–37.5 × 10–5 M) and temperature (293–318 K). The maximum inhibition efficiency (76.19%) and uniform coverage were sufficient for BPHP at an optimum concentration of 37.5 × 10–5 M with the lowest temperature of 293 K. TFPHP recorded 71.43% at the same conditions. Two PILs were adsorbed following the El-Awady adsorption isotherm, including physicochemical adsorption. The computational findings agree with Electrochemical measurements and thus confirm CS's corrosion protection in an aggressive environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.