Abstract

This study was aimed at determining how the visual information of an end-effector (racket) and the intermediate extremity (arm) of a tennis server contribute to the receiver's anticipatory judgement of ball direction. In all, 15 experienced tennis players and 15 novice counterparts viewed a spatially occluded computer graphics animation of a tennis serve (no-occlusion, racket-occlusion, and body-occlusion) and made anticipatory judgements of ball direction on a visual analogue scale (VAS). The patterns of the serve motions were generated by a simulation technique that computationally perturbs the rotation speed of the selected racket-arm joint (forearm pronation and elbow extension) on a captured serve motion. The results suggested that the anticipatory judgements were monotonically attuned with the perturbation rate of the forearm pronation speed excepting under the conditions of the racket-occlusion model. Although such attunements were not observed in the elbow perturbation conditions, the results of correlation analysis indicated that the residual information in the spatially occluded models had a similar effect to the no-occlusion model within the individual experienced participants. The findings support the notion that end-effector (racket) provides deterministic cues for anticipation, as well as imply that players are able to benefit from the relative motion of an intermediate extremity (elbow extension).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call