Abstract

We theoretically study the model of a hybrid cavity–Bose–Einstein condensates (BEC) system that consists of a two-level impurity atom coupled to a cavity–BEC system with radiation pressure coupling, where the system is weakly driven by a monochromatic laser field. The steady-states behavior of the entire system is researched in the framework of the impurity–cavity coupling dispersive limit. We find that the multiple types of photon steady-state antibunching effects can be obtained when only the dissipation of the cavity is included. Moreover, the strength and frequency range of conventional steady-state antibunching effects of the cavity can be significantly modified by the impurity atom and intrinsic non-linearity of BEC. This result shows that our study can provide a method to tune the antibunching effects of the cavity field. In addition, the non-standard photon blockade or superbunching effect with the suppression of two-photon correlation and enhancement of three-photon correlation can be realized. The frequency range of the superbunching effect also can be changed by the impurity atom and intrinsic non-linearity of BEC. Therefore, our study shows many quantum statistical characteristics in a hybrid cavity–BEC quantum system and its manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.