Abstract

As an important epigenetic modification, 5-carboxycytosine (5caC) played an important role in gene regulation, cell differentiation and growth. 5caC existed in many cells and tissues, but it was highly similar to the structure of other cytosine derivatives and had less content in the genome. Therefore, it was urgent to develop a sensitive and highly selective trace biosensor to detect 5caC. A novel photoelectrochemical biosensor was fabricated for 5-carboxy-2′-deoxycytidine-5′-triphosphate (5cadCTP) detection, where SnS2@Ti3C2 nanocomposite was employed as photoactive material, polyethyleneimine was used as 5cadCTP recognition and capture reagent, and Ru(NH3)63+ was used as photosensitizer for signal amplification. Due the good conductivity of Ti3C2 MXene and the matched energy band between Ti3C2 MXene and SnS2, SnS2@Ti3C2 nanocomposite presented strong photoactivity, which was beneficial to the high detection sensitivity. For specific recognition of 5cadCTP, the covalent interaction of –NH2 in 5cadCTP with –COOH on the substrate electrode was used, which was beneficial to the high detection selectivity. A broad linear relationship between photocurrent and 5cadCTP concentration was observed ranging from 1 pM to 0.2 μM. The low detection limit of 260 fM was achieved. The developed method has high detection specificity and can even distinguish 5caC with its derivatives. In addition, the applicability was evaluated by detecting the content change of 5caC in the genomic DNA of rice seedlings after cultured with environmental pollutants. This work provides a novel platform for 5cadCTP detection, and it can also be applied to detect other cytosine derivatives with suitable recognition strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.