Abstract

Antibody-secreting cells (ASCs) in respiratory tract tissues provide a first line of defense against invading pathogens. These cells often secrete IgA that is efficiently transcytosed across epithelial barriers into the airway lumen where pathogens can be blocked at their point of entry. Previous literature has reported that in the bone marrow, eosinophils are required for the maintenance of ASCs, and that eosinophils co-localize with ASCs as nearest neighbors. To determine if these rules similarly apply to the maintenance of ASCs in respiratory tract tissues, we evaluated virus-specific responses 1 month and 4 months following an intranasal virus infection of eosinophil-null (∆dblGATA-1) mice. Results showed that ASCs were fractionally reduced, but were nonetheless observed in respiratory tract tissues in the absence of eosinophils. Virus-specific antibodies were similarly observed in the airways of eosinophil-deficient mice. Respiratory tract ASCs were also present in mice lacking neutrophils (Mcl1∆M). The staining of tissue sections from the upper respiratory tract of wild-type mice following viral infections demonstrated that virus-specific ASCs were most frequently situated adjacent to epithelial cells rather than eosinophils or neutrophils. Taken together, these data emphasize that rules for cell maintenance are not absolute and that ASCs can survive in the respiratory tract without eosinophils or neutrophils as their nearest neighbors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.