Abstract

Mac-1 (CD11b/CD18) is known to be involved in neutrophil (PMN) adhesion to endothelial cells and extracellular matrix. Although antibodies to CD 18 are being tested for therapy in humans, their role in PMN migration through the extracellular matrix is unknown. We used direct visualization to quantify PMN motility through reconstituted, three-dimensional gels of collagen type I. Gels were prepared with different concentrations of collagen (ranging from 0.1 to 1.0 mg/mL) and PMN migration was examined in the presence and absence of antibodies to CD18 (anti-CD18), with and without stimulation by N-formyl peptides. In low-concentration gels (<0.6 mg/mL), anti-CD18 had a significant influence on PMN migration, increasing motility in unstimulated PMN by 90% at 0.3 mg/mL collagen, and decreasing motility in N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated PMN by 70% at 0.4 mg/mL collagen. But antiCD18 had no effect on the rate of cell migration through high-concentration collagen gels (>0.6 mg/mL). PMN migration through collagen gels is CD18-dependent but only under conditions of high hydration, suggesting that CD18-mediated effects (e.g., adhesion to gel fibers) are only important when the fiber density is relatively low. Anti-CD18 inhibited, but did not eliminate, the adhesion of fMLP-stimulated PMN to the surface of collagen gels, suggesting that cells use multiple mechanisms for gaining traction within the gel. Because of the multiple modes of interaction between motile cells and the deformable fiber matrix, blockade of one component, such as CD18, can enhance the rate of cell migration under one set of conditions, and inhibit under another.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.