Abstract

Antibiotics are emerging environmental contaminants with wide attention due to their high consumption and pseudo-persistence in the environment. They have been shown to induce obesity or obesity-related metabolic diseases in experimental animals, but the underlying toxicological mechanisms remain unclear. Here, the disruptive effects of four commonly used antibiotics, namely doxycycline (DC), enrofloxacin (ENR), florfenicol (FF) and sulfamethazine (SMT) on lipid metabolism were investigated in zebrafish (Danio rerio) larvae and murine preadipocyte cell line. Triglyceride (TG) content was reduced after 1 ng/L DC or ENR exposure but was increased at higher concentrations up to 100 mg/L. FF increased and SMT reduced TG content but did not show any concentration dependence. None of the antibiotics had any significant effect on total cholesterol (TC) content in zebrafish except 100 μg/L SMT. Expression levels of 8 lipid metabolism-related genes were also quantified. SMT was most disruptive by up-regulating six genes, followed by FF which up-regulated four genes and down-regulated one gene, whereas DC and ENR both up-regulated one gene. In 3T3-L1 preadipocytes, ENR, FF, and SMT in general increased TG content, while 100 mg/L FF reduced TG substantially. DC did not show any effect up to 10 mg/L, at which TG increased significantly. FF and SMT increased TC slightly at low concentrations but reduced it at high concentrations, whereas TC, DC and ENR had no effect at any tested concentrations. Gene expression measurement also indicated that SMT was most disruptive, followed by FF, DC, and ENR. Reporter gene assays showed that only SMT inhibited the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). The above experimental results and clustering analysis demonstrate that the four antibiotics exerted disruption on lipid metabolism through different mechanisms, and one of the mechanisms for SMT may be inhibition of PPARγ transcriptional activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.