Abstract
This study investigated the effect of antibiotics administered to pregnant dams on offspring gut microbiome composition and metabolic capabilities, and how these changes in the microbiota may influence their immune responses in both the periphery and the brain. We orally administered a broad-spectrum antibiotic (ABX) cocktail consisting of vancomycin 0.5 mg/mL, ampicillin 1 mg/mL, and neomycin 1 mg/mL to pregnant dams during late gestation through birth. Bacterial DNA was extracted from offspring fecal samples, and 16S ribosomal RNA gene was sequenced by Illumina, followed by analysis of gut microbiota composition and PICRUSt prediction. Serum and brain tissue cytokine levels were analyzed by Luminex. Our results indicate that the ABX-cocktail led to significant diversity and taxonomic changes to the offspring’s gut microbiome. In addition, the predicted KEGG and MetaCyc pathways were significantly altered in the offspring. Finally, there were decreased innate inflammatory cytokines and chemokines and interleukin (IL)-17 seen in the brains of ABX-cocktail offspring in response to lipopolysaccharide (LPS) immune challenge. Our results suggest that maternal ABX can produce long-lasting effects on the gut microbiome and neuroimmune responses of offspring. These findings support the role of the early microbiome in the development of offspring gastrointestinal and immune systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.