Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Highlights
Antibiotics produced by natural organisms play a role in their interactions shaping the lifestyle and homeostasis of bacterial populations and communities (Waksman, 1961; Davies, 2006; Fajardo and Martínez, 2008; Aminov, 2009)
In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance
The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria
Summary
Antibiotics produced by natural organisms play a role in their interactions shaping the lifestyle and homeostasis of bacterial populations and communities (Waksman, 1961; Davies, 2006; Fajardo and Martínez, 2008; Aminov, 2009). Possible units of selection in antibiotic resistance are discrete genetic sequences, genes, operons, functional genetic modules, mobile genetic elements (MGEs) as integrons, transposons, integrative–conjugative elements (ICEs), plasmids, or at the cellular and supra-cellular levels, genomes and cells (organisms), clones, clonal complexes, species, communities, and ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.