Abstract

Whole-genome sequencing of pathogenic bacteria Stenotrophomonas maltophilia from a less polluted environment of permafrost can help understand the intrinsic resistome of both antibiotics and metals. This study aimed to examine the maximum minimum inhibitory concentration (MIC) of both antibiotics and metals, as well as antibiotic resistance genes and metal resistance genes annotated from whole-genome sequences. The permafrost S. maltophilia was sensitive to ciprofloxacin, tetracycline, streptomycin, and bacitracin, and resistant to chloramphenicol, trimethoprim-sulfamethoxazole, erythromycin, Zn2+, Ni2+, Cu2+, and Cr6+, with a lower maximum MIC, compared with clinical S. maltophilia. The former strain belonged to the lower antibiotic resistance gene (ARG) and metal resistance gene (MRG) clusters compared with the latter ones. The permafrost strain contained no or only one kind of ARG or MRG on a single genomic island, which explained the aforementioned lower maximum MIC and less diversity of ARGs or MRGs. The result indicated that the co-occurrence of antibiotic and metal resistance was due to a certain innate ability of S. maltophilia. The continuous human use of antibiotics or metals induced selective pressure, resulting in higher MIC and more diverse ARGs and MRGs in human-impacted environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.