Abstract

Controlling spread of resistance genes from wastewater to aquatic systems requires more knowledge on how resistance genes are acquired and transmitted. Whole genomic sequences from sewage-associated staphylococcus isolates (20 S. aureus, 2 Staphylococcus warneri, and 2 Staphylococcus delphini) were analyzed for the presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). Plasmid sequences were identified in each isolate to investigate co-carriage of ARGs and MRGs within. BLASTN analysis showed that 67% of the isolates carried more than one ARG. The carriage of multiple plasmids was observed more in CC5 than CC8 S. aureus strains. Plasmid exchange was observed in all staphylococcus species except the two S. delphini isolates that carried multiple MRGs, no ARGs, and no plasmids. 85% of S. aureus isolates carried the blaZ gene, 76% co-carried blaZ with cadD and cadX, with 62% of these isolates carrying blaZ, cadD, and cadX on the same plasmid. The co-carriage of ARGs and MRGs in S. warneri isolates, and carriage of MRGs in S. delphini, without plasmids suggests non-conjugative transmission routes for gene acquisition. More studies are required that focus on the transduction and transformation routes of transmission to prevent interspecies exchange of ARGs and MRGs in sewage-associated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.