Abstract

The demand of medical materials for rapid and efficient elimination of bacteria has seen a dramatic surge over the past few years. In this study, antibacterial nanofilms with reactive oxygen species were generated by photocatalysis. To prepare these nanofilms, Ag and amorphous TiO2 nanoparticles decorated on polydopamine (PDA) were coated on three-dimensional (3D) nanopore arrays, which was fabricated on a substrate of anodized stainless steel. All the antibacterial tests were conducted with a household flashlight, which may be considered as a practical approach for antibacterial materials. The photoelectrochemical property of the 3D Ag/TiO2/PDA nanofilm on 316L stainless steel (Ag/TiO2/PDA SS) was about 15 times higher than that of the annealed Ag/TiO2/PDA SS, and consequently, it exhibited higher antibacterial activity. The enhanced photoelectrochemical property is attributed to the successful separation of electrons (amorphous TiO2) and holes (Ag nanoparticles). Further, when a plate containing 3D Ag/TiO2/PDA SS was irradiated with visible light just for 10 min, it immediately destroyed the bacteria in 106 CFU/mL without any bacterial colony. After five weeks, there were still no bacterial colonies in the plate corresponding to Ag/TiO2/PDA SS under visible light, while Ag/TiO2/PDA SS in dark had a negligible effect on the bacteria, i.e., the antibacterial mechanism through direct contact and ion dissolution was not efficient. The excellent antibacterial properties of 3D Ag/TiO2/PDA SS illuminated by flashlight provides an efficient, facile, and cost-effective technique for the development of antibacterial medical materials to meet the increasing demand of eliminating bacterial infections.Electronic supplementary materialThe online version of this article (10.1007/s10853-020-04610-w) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.