Abstract
In this study, we evaluated the occurrence of antibacterial peptide (ABP)-producing Bacillus spp. in fermented foods. Among 78 isolated cultures, 25 potential ABP-producing stains were selected and differentiated genotypically and phenotypically. The 16S rRNA gene sequence homology, in combination with morphological, physiological and biochemical characteristics, was used for the identification of the isolates. The isolates exhibited inhibitory activity against both Gram-positive and Gram-negative food-borne pathogens. The antibacterial compounds produced by these cultures were proteinaceous in nature, with molecular weight falling in the range of 3-6.5kDa. The ABP present in the cell-free supernatant of B. subtilis Ec1 and B. licheniformis Me1 exhibited the highest titre of activity (3,400AU/ml) and wide range of pH (4-10) and temperature (40-100°C) stability. The strain Ec1 was found to be exhibiting some in vitro probiotic properties, such as acid and bile tolerance, bile salt hydrolase activity and hydrophobicity towards hydrocarbons. The viable counts of Listeria monocytogenes Scott A in pasteurized milk samples containing ABP of Ec1 were lower than those observed in controls without ABP. The ABP-coated packaging films exhibited antimicrobial activity against the pathogens, indicating the application of ABP from Bacillus spp. in antimicrobial packing materials. These observations increase the likelihood of potential use of the isolated Bacillus spp. or their ABP for application in food biopreservation and as probiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.