Abstract
Cotton fabrics with durable antibacterial properties were prepared by a novel method of thiol-maleimide click reaction. Firstly, 3-Mercaptopropyltriethoxysilane was utilized as a modifier to generate thiol groups on the cotton surface. Then, these thiol groups reacted with N-phenyl-male-imide through thiol-maleimide click chemistry. The surface morphology of the treated fabrics and the reaction mechanism were characterized by FT-IR, Raman, EDS, XPS and SEM. Antibacterial activities, mechanical properties and thermal performance of treated cotton fabrics were also investigated. The Escherichia coli antibacterial rate of treated cotton was 99.56% and the Staphylococcus aureus antibacterial rate of treated cotton was 98.91%, with only a slight decrease after 10 cycles of standard washing, to 88.69 and 87.66%, respectively. These results demonstrated that this treatment effectively endowed cotton fabrics with durable antibacterial properties due to the chemical bonding formed between the antibacterial agent and the substrate. In addition, the treated cotton fabrics maintained good mechanical properties and thermal stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have