Abstract

The increase in multidrug resistance microorganisms has initiated the creation of other means of combating the damages caused by these microbes by scientists. This has led to the creation of more affordable, environmental friendly and cost effective antimicrobial agents in which formation of nanoparticle using plant leave extracts fits in rather than chemically synthesized antibiotics which have previously been in used. In this study, the efficacy of phyto-fabricated silver nanoparticle and its antibacterial effect against some bacteria which were collected from a research laboratory located in Awka, Anambra state were identified. To generate the aqueous extract of silver nanoparticle, the various plant leaves were dried for one week at a room temperature of 40oC. The dried leaf were pulverized, dissolved in 100mL deionized water and heated to a boiling temperature for 5 minutes until a nanoparticle is formed through the formation of dark brown colour and a double fitration is carried out using whatman no 1 filter paper. The synthesised silver nanoparticle was centrifuged, dried and used for antibacterial analysis. The antibacterial analysis was carried out using agar well diffusion method. The results from the antibacterial screening revealed that the tested organisms were susceptible to silver nanoparticles with Proteus mirabilis showing the highest zone of inhibition for cashew fabricated silver nanoparticle at 28.00±0.45 and concentration of 3.13mg/ml, while the lowest zone of inhibition using Carica papaya fabricated silver nanoparticle was observed with Pseudomonas aeruginosa at 4.00±0.36 and concentration of 6.25mg/ml. The negative control (DMSO) used did not produce any zone of inhibition on the tested organisms. Statistically, there was significant (P<0.005) inhibition of bacteria pathogenic strains among the means of A. muricata, C. papaya and A. occidentalis fabricated silver nanoparticle and ciprofloxacin standard antibiotics. The high antibacterial inhibition of the tested bacterial strains by A. muricata, C. papaya and A. occidentalis fabricated silver nanoparticle at minimal inhibitory concentration of 6.25mg/mL could be exploited as biostatic and biocidal agent. This shows that nanoparticle synthesised using biologically materials like plant part, are highly potent, cheaper to synthesized and as well, less toxic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.