Abstract

An oral periodontopathic bacterium, Bacillus cereus, was inhibited both by lactoperoxidase (LP) and myeloperoxidase (MP) antimicrobial systems. With the LP-SCN--H2O2 system, the growth inhibition was directly proportional to the amount of OSCN- ions present. The OSCN-, which is the principal oxidation product of the LP (or MP)-SCN--H2O2 system at neutral pH, is a normal component of human saliva. The oxidation products of both peroxidase systems inhibited the growth of the bacteria. This inhibition was associated with reduced extracellular release of collagenase activity from the cells. With LP, the antimicrobial efficiency of the oxidizable substrates was SCN- greater than I-, and with MP, the efficiency was I- greater than Cl- greater than SCN-, respectively. LP did not oxidize Cl-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.