Abstract

Nanozymes with peroxidase-like activity have great application potential in combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, the near-neutral pH and high glutathione (GSH) levels in the bacterial infection microenvironment severely limit their applications in antibacterial therapy. In this work, a metal-organic framework (MOF)-based cascade catalytic glutathione-depleting system named MnFe2O4@MIL/Au&GOx (MMAG) was constructed. The MMAG cascade-catalyzed glucose to provide H+ and produces a large amount of toxic reactive oxygen species. In addition, MMAG consumed GSH, which can result in bacterial death more easily. Systematic antibacterial experiments illustrated that MMAG has superior antibacterial effects on both Gram-positive bacteria and Gram-negative bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call