Abstract
Metallic materials are traditionally used as implant materials for the effective treatment of bone-related disorders. Among these, titanium and its alloys are selected for fabricating orthopedic implant materials owing to their biocompatibility, exceptional corrosion resistance, lower elastic modulus, and high load-bearing capacity. However, the performance of titanium-based metallic implants is compromised by microbial infections and rigorous inflammatory conditions in post-implantation. Therefore, a biofilm-inhibiting surface is crucial for enhancing the efficacy of the implant. In this study, we focused on the fabrication of titania nanotube arrays (TNTA) using inorganic electrolytes, incorporating selenium onto the TNTA surface. Selenium-coated TNTA (Se-TNTA) retained its morphology, though with a reduced nanotubular diameter. XRD analysis revealed the existence of mixed crystalline anatase and rutile phases in the Se-TNTA. Raman and XPS analyses confirmed the presence of selenium in the forms of Se0 and selenate. Corrosion analysis demonstrated that the deposition of selenium on the surface hindered the movement of ions from the harsh simulated body fluid (SBF) solution. Additionally, biofilm formation on the Se-TNTA was significantly lower compared to the control and TNTA. Cell culture studies indicated that cell attachment and proliferation of MG63 and 3T3 fibroblast cells were enhanced on Se-TNTA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have