Abstract

With the growing demand for nuclear energy, uranium extraction from seawater (UES) is becoming increasingly important due to the ocean reserves 4.5 billion tons for uranium(VI) [U(VI)]. Herein, two kinds of amidoxime modified bamboo charcoal (AOOBCS and AOOBCH) with porous structure, anti-bacterial, and super-hydrophilic properties were successfully synthetized by two etching methods (soaking and hydrothermal). The super-hydrophilic property of AOOBCH accelerated the contact between the amidoxime group and uranyl ions (UO22+), and promoted the action of anti-bacterial substances (bamboo-quinone) on bacteria to restrain the form of bacterial membrane. In addition, the amidoxime groups not only didn’t destroy the super-hydrophilic surface, but also adjusted the adsorbents’ pKa by changing the amidoxime grafting rate. Under PH = 7, the adsorption capacity of AOOBCH was about 1.97 times that of AOOBCS and 2.95 times that of BC. Importantly, the AOOBCH exhibited ultra-high uptake capacity (6.37 mg g−1) and exceptional selectivity for U(VI) in 100-fold interfering ions simulated seawater system due to the chelation between C(NH2)NOH and UO22+ to form a more stable coordination structure (Eads = −36.56 eV). Benefiting from the superior performance and selectivity, the AOOBCH is a potential candidate for UES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call