Abstract
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing. To modify the surface properties and facilitate the loading and release of therapeutics, the scaffold was coated with chitosan-polyethylene glycol (CS-PEG) nanofibers incorporating vancomycin (V) and insulin-like growth factor-1 (IGF1). The characterization was conducted using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the release of V (93.43 %) and IGF1 (95.86 %) from the fabricated scaffolds persisted for 28 days in a phosphate-buffered saline (PBS) solution. The release of V resulted in antibacterial activity against Staphylococcus aureus (S. aureus), forming an inhibition zone of 21.16 mm. Additionally, it was demonstrated that the release of IGF1 could counteract the adverse effect of V release on cell behavior, and enhance the adhesion and proliferation of MG63 cells. Preclinical in vivo studies conducted on a rat calvarial defect model validated that the bone repair was fully completed in the group treated with the fabricated scaffold within 8 weeks. Consequently, the scaffold designed in this study can serve as a versatile scaffold for achieving perfect repair of craniofacial defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have