Abstract

Biofilms are made up of bacterial colonies and their extracellular polymeric substances (EPS) matrix, which protects the bacteria from adverse environmental conditions. The increasing drug resistivity of pathogenic bacteria is becoming an emergency for developing new antibacterial agents. In this study, we have synthesized the zinc oxide nanoparticles (ZnO NPs) using the leaf extract of Saraca asoca plant, and the antibacterial and antibiofilm activity of green synthesized ZnO NPs was measured against the biofilm-producing bacteria Bacillus subtilis. The disk diffusion data reveals that the zone of inhibition (ZOI) starts at a concentration of 0.5mg/mL and minimum inhibition concentration (100µg/mL) and minimum bactericidal concentration (150µg/mL) values were also evaluated for green synthesized ZnO nanomaterials. Crystal violet test and microscopic examination were used to assess the impact of produced nanoparticles on biofilm development. The findings indicated a nearly 45%, 64%, and 83% suppression of biofilm development at 0.5 × MIC, 0.75 × MIC, and 1 × MIC value, respectively. The biofilm biomass of the preformed or matured biofilms by the ZnO NPs was evaluated to be 68%, 50%, and 33% at concentrations of 0.5 × MIC, 0.75 × MIC, and 1 × MIC which was concentration-dependent. Moreover, flow cytometry results suggest damage to the bacterial cell membrane. The data indicated that the proportion of dead cells increased with NP concentration in comparison to the control. Therefore, it can be concluded that the green synthetic ZnO nanoparticles showed excellent antibacterial and antibiofilm activity against the Bacillus subtilis bacteria that produce biofilms and that they could be a promising substitute agent for the treatment of biofilms and drug-resistant bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call