Abstract
Because of the apparent stasis in antibiotic discoveries and the growth of multidrug resistance, Helicobacter pylori-associated gastric infections are difficult to eradicate. In the search for alternative therapy, the reductive amination of chitosan with mannose, followed by ionic gelation, produced mannose functionalized chitosan nanoparticles. Then, molecular docking and molecular dynamics (MD) simulations were conducted with H. pylori lectin (HPLectin) as a target protein involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. Changes in zeta potential and FTIR spectroscopy revealed that chitosan was functionalized with mannose. Time-kill, polystyrene adherence, and antibiofilm studies were utilized to assess nanoparticles as an alternative antibacterial treatment against a resistant gastric pathogen. Man-CS-Nps were discovered to have effective anti-adherence and biofilm disruption characteristics in suppressing the development of resistant H. pylori. In addition, bioimaging studies with CLSM, TEM, and SEM illustrated that Man-CS-Nps interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Man-CS-Nps inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues. As a consequence of the findings of this study, the Man-CS-Nps is an excellent candidate for developing alternative therapies for the increasing incidences of resistant gastric infections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have