Abstract
The prevalence of diabetic foot ulcers (DFUs) is increasing, leading to a huge financial burden and human suffering. Furthermore, antibiotic resistance is an urgent problem in the realm of clinical practice. Antimicrobial peptides are an effective and feasible strategy for combating infections caused by drug-resistant bacteria. Therefore, we investigated the in vitro antimicrobial ability of the lipopeptide surfactin, either alone or in combination with conventional antibiotics, against the standard and clinical strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), isolated from patients with DFUs. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of surfactin on the selected strains were evaluated by a microbroth dilution technique. The growth curves of the selected strains with and without surfactin were measured, and transmission electron microscopy was used to observe the structure of surfactin-treated bacterial cells. The biofilm inhibitory abilities of surfactin were assessed by crystal violet staining. The antimicrobial interactions between surfactin and conventional antibiotics were established using a checkerboard assay, as well as determining the mutant prevention concentration. The inhibitory effect of surfactin on penicillinase was tested by iodometry. The MIC and MBC values of surfactin ranged from 512 to 1024 µg/mL and 1024 to 2048 µg/mL, respectively. Moreover, surfactin significantly prevented the S. aureus biofilm formation and displayed limited toxicity on human red blood cells. The synergies between surfactin and ampicillin, oxacillin, and tetracycline against S. aureus were revealed. In vitro resistance was not readily produced by surfactin. The action of surfactin may be by disrupting bacterial cell membranes and inhibiting penicillinase. Surfactin appears to be a potential option for the treatment of DFUs infected with MRSA, as it is capable of improving antimicrobial activities and can be used alone or in combination with conventional antibiotics to prevent or postpone the emergence of resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.