Abstract
Statement of problemInterim restorations are occasionally left in the mouth for extended periods and are susceptible to bacterial infiltration. Thus, dental interim cements with antibacterial properties are required. PurposeThe purpose of this in vitro study was to determine in vitro antibacterial activity against Streptococcus mutans and to compare the diametrical tensile strength (DTSs) of dental interim cement modified with zinc oxide nanoparticles (ZnO-NPs) with that of cement modified with terpenes. Material and methodsAntibacterial properties of ZnO-NPs, terpenes, and dental interim cement modified with ZnO-NPs and cement modified with terpenes against S mutans were tested according to minimum inhibitory concentration (MIC) and direct contact inhibition (DCI). Tensile strength levels were evaluated using DTS. Results were analyzed using the Kolmogorov-Smirnov, ANOVA, and Tamhane tests (α=.05). ResultsThe MICs of ZnO-NPs and terpenes against S mutans were 61.94 μg/g and 0.25% v/v, respectively. The DCI assay under the cylinders of cement (area of contact with the agar surface) revealed significant bacterial growth inhibition on Temp-Bond NE specimens with ZnO-NPs at MIC of 495.2 μg/g (8× MIC) and with terpenes at MIC 0.999% v/v (4× MIC) (P<.05). The Temp-Bond NE cement cylinder (control group) showed the lowest DTS (1.05 ±0.27 MPa) of all other test groups. In the Zn-NPs group, the greatest increase occurred in the NP8 (8× MIC; 495.2 μg/g) group with a value of 1.50 ±0.23 MPa, a significant increase in DTS compared with the control and terpene groups (P<.05). In the terpene group, the highest increase corresponded to group T2 (2× MIC; 0.4995% v/v) with a value of 1.29 ±0.18 MPa. ConclusionsThe addition of terpenes and ZnO-NPs to interim cement showed antibacterial activity when in contact with S. mutans ATCC 25175. Both terpenes and ZnO-NPs antimicrobial agents increased diametral tensile strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.