Abstract

Plant extracts and their purified compounds were examined for synergistic antimicrobial activity using selected multi-drug resistant (MDR) pathogens. The study aims to investigate the antibacterial activity of green tea (Camellia sinensis) and its purified compound epigallocatechingallate (EGCG). The synergistic relation of the compound with antibiotic was detected against selected potential Gram positive and Gram negative pathogens. Staphylococcus aureus and Escherichia coli were used as test pathogens which were resistant to different groups of antibiotics. After collection of fresh green tea leaves, samples were washed and air dried. EGCG is one of the bioactive compounds and was separated from tea plant. Antibacterial activity of EGCG and crude extracts of green tea were done by microdilution method (minimum inhibitory concentration and minimum bactericidal concentration). The synergistic effect of EGCG and gentamicin was determined. MIC value of green tea extract was found at 125 μg/mL in case of MDR E. coli, MDR S. aureus and their reference strains and MBC at 500 μg/mL against S. aureus. No MBC value was found against E. coli. EGCG showed better activity on Gram positive pathogen compared to that of Gram negative. MBC value of this compound was 1250 μg/mL for E. coli where 625 μg/mL for S. aureus. Strong synergistic relation (FICI 0.325) was found against pathogens in the combination of EGCG with gentamycin. The purified EGCG compound of green tea has great synergistic effect against MDR pathogens. More investigation is needed to know the inhibitory effect of these plant extracts and their components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.