Abstract
This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan-calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis. Chondrocytes exposed to IL-1β and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induced arthritis. C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1β-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan-calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines. The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have