Abstract
Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activities. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic reticulum pathways.
Highlights
Ribosome-inactivating proteins (RIPs) are a family of enzymes that inhibit the eukaryotic ribosome via N-glycosidase activity, by which they cleave a specific adenine residue from the 28S RNA within the 60S ribosomal subunit, inhibiting protein synthesis [1, 2]
Abundant evidence indicates that RIPs exert their cellkilling abilities through a variety of mechanisms, many of which are caspase-dependent
Several mechanisms involved in RIP-induced apoptosis have been elucidated, more studies are required to reveal the precise mechanism
Summary
Ribosome-inactivating proteins (RIPs) are a family of enzymes that inhibit the eukaryotic ribosome via N-glycosidase activity, by which they cleave a specific adenine residue from the 28S RNA within the 60S ribosomal subunit, inhibiting protein synthesis [1, 2]. In addition to their effect on ribosomal RNA (rRNA), some RIPs display a variety of anti-microbial activities in vitro, including anti-fungal, anti-bacterial, and broad-spectrum anti-viral properties against both human and animal pathogens. Type II RIPs, such as ricin and abrin, comprise two different domains: a 30-kDa enzymatic A-chain (similar to type I RIPs) linked to a slightly larger B-chain with lectin properties and specificity for sugars possessing galactose-like
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have