Abstract

Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.