Abstract

This paper reports an anti-relaxation of tensile lattice strain in a narrow Ge strip epitaxially grown on Si by CVD. In an ordinary Ge mesa strip as narrow as 1 μm or below, an in-plane tensile strain as high as 0.2% due to the thermal expansion mismatch with the Si substrate is relaxed by edge-induced relaxation. Such a relaxation is significantly prevented by embedding the Ge strip entirely in Si, as supported by Raman and photoluminescence spectra as well as theoretical strain analysis. This anti-relaxation is effective for efficient optical absorption and light emission at around 1.55 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.